Chaotic Dynamical Systems

Michael Grantham
Mentor: James O'Quinn
Texas A\&M University

23 November 2020

Talk Outline

- Dynamical Systems Background
- Hyperbolicity
- The Schwarzian Derivative
- Chaotic Systems
- Bifurcation

Motivation

- Imagine you want to model the population of some species.
- Have some function $f(x)$ where x is the current population.
- Then for time $n, f^{n}(x)=f \circ f \circ \cdots \circ f(x)$.
- This is a Dynamical System.

Definition

A Dynamical System, (X, T) is comprised of a space X and some function/map T on X.

Logistic Map

The Logistic Map, $F_{\mu}=\mu x(1-x)$ is dynamical system on \mathbb{R}. One of its applications is population modeling.

Dynamical Systems

Definition

The orbit of a point is the path it takes through it's iterations, $\left\{f^{n}(x) \mid n \in 0,1,2, \ldots\right\}$

Definition

A point is a fixed point if for $f, f(x)=x$. If for some $n, f^{n}(x)=x$ then x is a periodic point of period n

Dynamical Systems

Definition

Let p be a periodic point of period n. A point x is forward asymptotic to p if $\lim _{i \rightarrow \infty} f^{i n}(x)=p$.

Definition

The stable set, $W_{s}(p)$, consists of all points which are forward asymptotic to p.

Example

For F_{2}, all points on the unit interval are forward asymptotic to $1 / 2$, Therefore the stable set is: $W_{s}(1 / 2)=(0,1)$

Hyperbolicity

Definition

Let p be a perioidc point of period n. The point p is hyperbolic if $\left|\left(f^{n}\right)^{\prime}(p)\right| \neq 1$.

Definition

Let p be a hyperbolic point of period n. If $\left|\left(f^{n}\right)^{\prime}(p)\right|<1$ then p is an attractor (attracting fixed point, or a sink).

Definition

Let p be a fixed point. If $\left|f^{\prime}(p)\right|>1$ then p is a repellor (repelling fixed point, or source).

Hyperbolicity

Example: Take $F_{\mu}, \mu=2$ as before. $x=1 / 2$ is a hyperbolic attractor.

Schwarzian Derivative

Definition

The Schwarzian Derivative of a function f is

$$
S f(x)=\frac{f^{\prime \prime \prime}(x)}{f^{\prime}(x)}-\frac{3}{2}\left(\frac{f^{\prime \prime}(x)}{f^{\prime}(x)}\right)^{2}
$$

Theorem

If $S f<0$ and f has n critical points. Then f has at most $n+2$ attracting periodic orbits.

Schwarzian Derivative

Intuition

- A bounded stable set must have a critical point.
- There are at most 2 unbounded stable sets.
- Therefore the upper bound on number of stable sets, and therefore attracting points, is $n+2$.

Chaos

- Topological transitivity
- For some $f: J \rightarrow J$ if any pair of open sets $U, V \subset J, \exists k>0$ s.t. $f^{k}(U) \cap V \neq \emptyset$.
- This is equivalent to having a dense orbit.
- Sensitivity to initial conditions
- $\exists \delta>0$ s.t. $\forall x \in X$ and every open set U which contains $x \exists y \in U$ s.t. $\left|f^{n}(x)-f^{n}(y)\right|>\delta$.
- Butterfly Effect
- Dense periodic points

Chaos

$$
\text { Take } F_{\mu} \text { with } \mu=2,4 \text { on the unit interval. }
$$

- F_{2} is not chaotic.
- Recall that $W_{s}(1 / 2)$ is the unit interval. Therefore sensitivity to initial conditions isn't satisfied.
- Note: topological transitivity is not satisfied and this does not have dense periodic points either.
- This is true for all $\mu<4$
- F_{4} is chaotic.
- Observe visually that the shown orbit is dense.
- Observe that for any two points their orbits get farther apart.
- Periodic points are dense.

Bifurcation

References

Devaney, Robert L. An Introduction to Chaotic Dynamical Systems. 2nd Ed. (1989).

