Chaotic Dynamical Systems

Michael Grantham
Mentor: James O’Quinn

Texas A&M University

23 November 2020
Talk Outline

- Dynamical Systems Background
- Hyperbolicity
- The Schwarzian Derivative
- Chaotic Systems
- Bifurcation
Motivation

- Imagine you want to model the population of some species.
- Have some function $f(x)$ where x is the current population.
- Then for time n, $f^n(x) = f \circ f \circ \cdots \circ f(x)$.
- This is a Dynamical System.

Definition

A **Dynamical System**, (X, T) is comprised of a space X and some function/map T on X.

Logistic Map

The **Logistic Map**, $F_\mu = \mu x(1 - x)$ is dynamical system on \mathbb{R}. One of its applications is population modeling.
Dynamical Systems

Definition

The **orbit** of a point is the path it takes through its iterations, \(\{ f^n(x) \mid n \in 0, 1, 2, \ldots \} \)

Definition

A point is a **fixed point** if for \(f \), \(f(x) = x \). If for some \(n \), \(f^n(x) = x \) then \(x \) is a **periodic point** of period \(n \).
Definition

Let p be a periodic point of period n. A point x is **forward asymptotic** to p if \(\lim_{i \to \infty} f^i(x) = p \).

Definition

The **stable set** $W_s(p)$, consists of all points which are forward asymptotic to p.

Example

For F_2, all points on the unit interval are forward asymptotic to $1/2$, Therefore the stable set is: $W_s(1/2) = (0, 1)$
Hyperbolicity

Definition
Let p be a periodic point of period n. The point p is **hyperbolic** if $|(f^n)'(p)| \neq 1$.

Definition
Let p be a hyperbolic point of period n. If $|(f^n)'(p)| < 1$ then p is an **attractor** (attracting fixed point, or a sink).

Definition
Let p be a fixed point. If $|f'(p)| > 1$ then p is a **repeller** (repelling fixed point, or source).
Example: Take F_{μ}, $\mu = 2$ as before. $x = 1/2$ is a hyperbolic attractor.
Definition

The **Schwarzian Derivative** of a function f is

$$Sf(x) = \frac{f''''(x)}{f'(x)} - \frac{3}{2} \left(\frac{f'''(x)}{f'(x)} \right)^2$$

Theorem

If $Sf < 0$ and f has n critical points. Then f has at most $n + 2$ attracting periodic orbits.
Schwarzian Derivative

Intuition

- A bounded stable set must have a critical point.
- There are at most 2 unbounded stable sets.
- Therefore the upper bound on number of stable sets, and therefore attracting points, is $n + 2$.

\[(\leftarrow \right) \]
- **Topological transitivity**
 - For some $f : J \to J$ if any pair of open sets $U, V \subset J$, $\exists k > 0$ s.t. $f^k(U) \cap V \neq \emptyset$.
 - This is equivalent to having a dense orbit.

- **Sensitivity to initial conditions**
 - $\exists \delta > 0$ s.t. $\forall x \in X$ and every open set U which contains x $\exists y \in U$ s.t. $|f^n(x) - f^n(y)| > \delta$.
 - Butterfly Effect

- **Dense periodic points**
Take F_μ with $\mu = 2, 4$ on the unit interval.

- F_2 is not chaotic.
 - Recall that $W_s(1/2)$ is the unit interval. Therefore sensitivity to initial conditions isn’t satisfied.
 - Note: topological transitivity is not satisfied and this does not have dense periodic points either.
 - This is true for all $\mu < 4$

- F_4 is chaotic.
 - Observe visually that the shown orbit is dense.
 - Observe that for any two points their orbits get farther apart.
 - Periodic points are dense.